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Abstract— In this paper, we propose privacy-preserving 
algorithms for determining an optimal meeting location for a 
group of users. We perform a thorough privacy evaluation by 
formally quantifying privacy-loss of the proposed approaches. 
In order to study the performance of our algorithms in a real 
deployment, we implement and test their execution efficiency 
on Nokia smartphones. By means of a targeted user-study, we 
attempt to get an insight into the privacy-awareness of users in 
location based services and the usability of the proposed 
solutions. 
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INTRODUCTION 

The rapid proliferation of smartphone technology in urban 
communities has enabled mobile users to utilize context 
aware services on their devices. Service providers take 
advantage of this dynamic and ever-growing technology 
landscape by proposing innovative context-dependent 
services for mobile subscribers. Location-based Services 
(LBS), for example, are used by millions of mobile 
subscribers every day to obtain location-specific 
information [1]. 
Two popular features of location-based services are 
location check-ins and location sharing. By checking into a 
location, users can share their current location with family 
and friends or obtain location-specific services from third-
party  providers [2], [3]. The obtained service does not 
depend on the locations of other users. The other type of 
location-based services, which rely on sharing of locations 
(or location preferences) by a group of users in order to 
obtain some service for the whole group, are also becoming 
popular. According to a recent study [4], location sharing 
services are used by almost 20% of all mobile phone users. 
One prominent example of such a service is the taxi-sharing 
application, offered by a global telecom operator [5], where 
smartphone users can share a taxi with other users at a 
suitable location by revealing their departure and 
destination locations. Similarly, another popular service [6] 
enables a group of users to find the most geographically 
convenient place to meet. 
Privacy of a user’s location or location preferences, with 
respect to other users and the third-party service provider, is 
a critical concern in such location-sharing-based 
applications. For instance, such information can be used to 
de-anonymize users and their availabilities [7], to track their 
preferences [8] or to identify their social networks [9]. For 
example, in the taxi-sharing application, a curious third-
party service provider could easily deduce home/work 
location pairs of users who regularly use their service. 
Without effective protection, even sparse location 

information has been shown to provide reliable information 
about a users’ private sphere, which could have severe 
consequences on the users’ social, financial and private life 
[10], [11]. Even service providers who legitimately track 
users’ location information in order to improve the offered 
service can inadvertently harm users’ privacy, if the 
collected data is leaked in an unauthorized fashion or 
improperly shared with corporate partners. Recent user 
studies [4] show that end-users are extremely sensitive 
about sharing their location information. Our study on 35 
participants, including students and non-scientific staff, 
showed that nearly 88% of users were not comfortable 
sharing their location information. Thus, the disclosure of 
private location in any Location-Sharing-Based Service 
(LSBS) is a major concern and must be addressed. 
In this paper, we address the privacy issue in LSBSs by 
focusing on a specific problem called the Fair Rendez-Vous 
Point (FRVP) problem. Given a set of user location 
references,  the FRVP problem is to determine a location 
among the proposed ones such that the maximum distance 
between this location and all other users’ locations is 
minimized, i.e. it is fair to all users. Our goal is to provide 
practical privacy-preserving techniques to solve the FRVP 
problem, such that neither a third-party, nor participating 
users, can learn other users’ locations; participating users 
only learn the optimal location. The privacy issue in the 
FRVP problem is representative of the relevant privacy 
threats in LSBSs. 

RELATED WORK 

The problem of privacy-preserving fair rendez-vous 
location has received little or no attention in the literature. 
Santos and Vaughn [30] present a survey of existing 
literature on  meeting-location algorithms and propose a 
more  comprehensive solution for such a problem. 
Although considering aspects such as user preferences and 
constraints, their work (or the surveyed papers) does not 
address any security or privacy issues. Similarly, Berger et 
al. [31] propose an efficient meeting-location algorithm that 
considers the time in-between two consecutive meetings. 
However, all private information about users is public. 
In the domain of Secure Multiparty Computation (SMC), 
several authors have addressed privacy issues related to the 
computation of the distance between two routes [32] or 
points [33], [34]. Frikken and Atallah [32] propose SMC 
protocols for securely computing the distance between a 
point and a line segment, the distance between two moving 
points and the distance between two line segments. Zhong 
et al. [35] design and implement three distributed privacy-
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preserving protocols for nearby friend discovery, and they 
show how to cryptographically compute the distance 
between a pair of users. However, due to the fully 
distributed nature of the aforementioned approaches, the 
computational and  communication complexities increase 
significantly with the size of the participants and inputs. 
Moreover, all parties involved in the computations need to 
be online and synchronized. 
There have also been several research results in the 
literature that focus on the problem of privacy-preserving 
location-basedqueries and location sharing or anonymous 
location checkins. However, these research efforts attempt 
to solve issues that are orthogonal, and uniquely different, 
from the ones addressed in this paper. Jaiswal and Nandi 
[36] propose a privacy-preserving platform, called Trust No 
One, for privately locating nearby points-of-interest. Their 
architecture relies on three non-colluding parties, i.e., the 
mobile operator, the LBS provider, and the matching 
service, for decoupling user locations from user queries. 
The architecture proposed by Jaiswal and Nandi [36] 
addresses the problem of location privacy preserving 
information retrieval, which is different from our focus. 
 

SYSTEM ARCHITECTURE 

We consider a system composed of two main entities: (i) a 

set of users (or mobile devices) U = {u1, . . . , uN } and (ii) a 

third-party service provider, called Location Determination 
Server (LDS), which is responsible for privately computing 
the fair rendez-vous location or point from a set of  user 
preferred rendez-vous locations. Each user’s mobile device 
is able to communicate with the LDS by means of some 
fixed infrastructure-based Internet connection. 
Each user ui  has the means to determine the coordinates Li 
= (xi , yi ) ∈ N2 of his preferred rendez-vous location. We 
consider a two-dimensional coordinate system, but the 
proposed schemes are general enough and can be easily 
extended to other higher dimensional coordinate systems 
[14]. 
Users can either use their current position as their preferred 
rendez-vous location or they can specify some other 
preferred location (e.g., a point-of-interest such as a known 
restaurant) away from their current position. Users 
determine their current position (or positions of known 
points-of-interest) by using a positioning service, such as 
Global Positioning System or GPS. We assume that the 
positioning service is fairly accurate. GPS, for example, has 
an average positioning error between 3 and 7.8 meters. 
We define the set of the preferred rendez-vous locations of 
all users as L = {Li }N

i=1. For the sake of simplicity, we 
consider line-of-sight Euclidean distances between 
preferred rendez-vous locations. Even though the actual 
real-world distance (road, railway, boat, etc.) between two 
locations is at least as large as their Euclidean distance, the 
proportion between distances in the real world is assumed 
to be correlated with the respective Euclidean distances. 
The mobile devices are able to perform public-key 
cryptographic operations. We assume that each of the N 
users has his own public/private key pair (Kui

P , Kuis ), 
certified by a trusted CA, which is used to digitally 

sign/verify the messages that are sent to the LDS. 
Moreover, we assume that the N users share a common 
secret that is utilized to generate a shared public/private key 
pair (KMv

P , KMv
s) in an online fashion for each meeting 

setup instance v. The private key KMvs generated in this way 
is known only to all meeting participants, whereas the 
public key KMv

P is known to everyone including the LDS. 
This could be achieved by means of a secure credential 
establishment protocol [17], [18]. 
The LDS executes the FRVP algorithm on the inputs it 
receives from the users in order to compute the FRV point. 
The LDS is also able to perform public-key cryptographic 
functions. For instance, a common public-key infrastructure 
using the RSA cryptosystem [19] could be employed. Let 
KLDS

P be the public key, certified by a trusted CA, and KLD0s 

the corresponding private key of the LDS. K LDS
P is publicly 

known and users encrypt their input to the FRVP algorithm 
using this key; the encrypted input can be decrypted by the 
LDS using its private key K LDSs . This ensures message 
confidentiality and integrity. For simplicity, we do not 
explicitly show the cryptographic operations involving 
LDS’s public/private key. 

A.  Threat Model 

1) Location Determination Server: The primary type of 
LDS adversarial behavior that we want to protect against is 
an honest-but-curious or semi-honest [20] adversary, where 
the LDS is assumed to execute the algorithms correctly, i.e., 
take all the inputs and produce the output according to the 
algorithm, but is not fully trusted (as opposed to [21]). It 
may try to learn information about the users’ location 
preferences from the received inputs, the intermediate 
results and the produced outputs. In most practical settings, 
where service providers have a commercial interest in 
providing a faithful service to their customers, the 
assumption of a semi-honest LDS is generally sufficient. 
Given this goal of protecting against a semi-honest LDS, 
we will later also analyze how our proposed solutions fair 
against certain active attacks, including collusion with users 
and fake user generation. 
 
2) Users: Similar to the LDS assumption, our main goal is 
to protect against semi-honest participating users who may 
want to learn the private location preferences of other users 
from the intermediate results and the output of the FRVP 
algorithm. We refer to such attacks as passive attacks. As 
user inputs are encrypted with the LDS’s public key Kp 

LD , 
there is a confidentiality guarantee against basic 
eavesdropping by participants and non-participants. Given 
this goal of protecting against semi-honest users, we will 
later also analyze how our proposed solutions fair against 
certain active attacks, including collusion among users and 
input manipulation attacks. 
 

 PPFRVP PROBLEM FORMULATION  

In this work, we consider the problem of finding a 
rendezvous point among a set of user-proposed locations, 
such that (i) the rendez-vous point is fair (as defined in 
Section IV-A) with respect to the given input locations, (ii) 
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each user learns only the final rendez-vous location and (iii) 
no participating user or third-party server learns private 
location preference of any other user involved in the 
computation. We refer to an algorithm that solves this 
problem as Privacy-PreservingFair Rendez-Vous Point 
(PPFRVP) algorithm.  
 

PROPOSED SOLUTION TO PPFRVP PROBLEM 
In this section, we outline the details of our proposed 
protocol for solving the PPFRVP problem. In order to 
separate the optimization aspect from the implementation, 
we first formally outline the fairness and transformation 
functions and then discuss the construction of the PPFRVP 
protocol. 
 

The PPFRVP protocol  has three main modules: (A) the 
distance computation module, (B) the MAX module and (C) 
the ARGMIN MAX module. 

 
1) Distance Computation: The distance computation 

module uses either the BGN-distance or the Paillier-
ElGamaldistance protocols. We note that modules (B) and 
(C) use the same encryption scheme as the one used in 
module (A). In other words, E(.)  refers to encryption using 
either the BGN or the Paillier encryption scheme. 

2) MAX Computation: In Step B.1, the LDS needs to 
hide  the values within the encrypted elements (i.e., the 
pairwise distances computed earlier) before sending them to 
the users. 

This is done to avoid disclosing private information, such  
as the pairwise distances or location preferences, to users.3 
In order to mask these values, for each index i, the LDS 
generates two random values (ri and si) that are used to 
scale and shift the ctot

i j (the encrypted square distance 
between Li and L j) for all j , thus, obtaining d∗i j . This is 
done in order to (i) ensure privacy of real pairwise distances, 
(ii) be resilient in case of collusion among users and (iii) 
preserve the internal order (the inequalities) among the 
pairwise distance from each user to all other users. 
Afterwards, in Step B.2 the LDS chooses two private 
element-permutation functions σ (for i) and θ (for j ) and 
permutes d∗i j , obtaining the permuted values d∗σi θj, 
where i, j ∈ {1, . . . , N}. The LDS sends N such distinct 
elements to each user. In Step B.3, each user decrypts the 
received values, determines their maximum and sends the 
index σmaxi of the maximum value to the LDS. The  MAX 
module (B), the LDS inverts the permutation functions σ, θ 
and removes the masking from the received indexes 
corresponding to the maximum distance values. 
 
3) ARGMIN MAX Computation: The LDS masks the true 
maximum distances by scaling and shifting them by the 
same random amount such that their order is preserved. 
Then, the LDS sends to each user all the masked maximum 
distances. Each user decrypts the received masked 
(randomly scaled and shifted) maximum values, and 
determines the minimum among all maxima. Each user 
knows which identifier corresponds to himself, and the user 
whose preferred location has the minimum distance sends 
to all other users the fair rendezvous location in an 

anonymous way. After the last step, each user receives the 
final fair rendez-vous location, but no other information 
regarding non-fair locations or distances is leaked. 

PRIVACY AND COMPLEXITY ANALYSIS 

We first analyze the privacy of the proposed PPFRVP 
protocol  with respect to the adversary model outlined in 
Section II-A. 
 
A. Privacy Analysis Under Passive Adversary Model 
Under the assumption of a passive adversary (both, LDS 
and participating users), we have the following result: 
Proposition 1: The proposed PPFRVP protocols are correct 
and they guarantee identifiability- and coordinate linkability 
privacy. However, they do not guarantee distance 
linkability privacy. 

Proof: Correctness: Given the encrypted set of user 
preferred locations f (L1), . . . , f (LN ), the proposed 
PPFRVP algorithms first compute the pairwise distance di j 
between each pair of users i and j , ∀i, j ∈ {1, . . . , N}. 
One can easily verify that the ElGamal-Paillier-based 
distance computation algorithm computes: 
 

 
 
The same result is achieved by the BGN-based distance 
algorithm. After the pairwise distance computations, the 
PPFRVP algorithm computes the masking of these pairwise 
distances by scaling and shifting operations. The scaling 
operation is achieved by exponentiating the encrypted 

element to the power of ri, where ri ∈ Z∗w is a random 

integer and r−1 i is its multiplicative inverse. The shifting 
operation is done by multiplying the encrypted element 
with the encryption (using the public key of the users) of 
another random integer si privately chosen by the LDS. 
These two algebraic operations mask the values d2i j (within 
the encrypted elements), such that the true d2i j are hidden 
from the users. Nevertheless, thanks to the homomorphic 
properties of the encryption schemes, the LDS is still able 
to remove the masking (after the users have identified the 
maximum value) and correctly re-mask all maxima, such 
that each user is able to correctly find the minimum of all 
maxima. In the end, each user is able to determine L f air, 

where fair = argmini maxj d2i j from the outputs of the 

PPFRVP algorithm, and therefore the PPFRVP algorithms 
are correct. 
 
1) User Identifiability Advantage: Hereafter we provide 
sketches of the proofs of user-privacy, after a private 
execution of the PPFRVP algorithm A. A sketch is usually 
given to intuitively show how the formal proof can be 
constructed with the argument presented in the sketch. In 
particular, the following sketches are exhaustive, i.e., they 
cover all possible cases, and they are used to show whether 
the different advantages are non-negligible and thus 
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whether a PPFRVP algorithm A is execution privacy-
preserving. 
In the identifiability advantage, there are only two possible 
outcomes of the PPFRVP algorithm, depending on users’ 
preferred locations Li : The first case is when L f air = La, 
i.e., when the fair rendez-vous location is the one proposed 
by the adversary; the second case is when L f air _= La, i.e., 
when the fair location is different from the one proposed by 
the adversary. Hereafter we split the sketch of our proof 
according to these two (and only possible) cases, and show 
that the advantage of the adversary is negligible in both 
these cases: 
 
1) Lfair = La: In this case, the adversary does not 
learn any additional information that was not already 
known to him before the execution of the protocol, except 
the order among the maximum distances between the users 
and the corresponding indices. Moreover, we consider here 
the non-trivial case where the challenger chooses a value k 
≠a, otherwise the correct answer to the challenge is trivial. 
It should be noted that the challenger cannot select the 
trivial case with a probability greater than 1/N (during the 
challenge step or step 3). In this non-trivial case, the 
adversary cannot guess the value k ≠a with a higher 
certainty than he would by a random guess because only the 
LDS knows the secret scaling and shifting values used for 
the masking operation. In fact, the order among the masked 
distances does not reveal any additional information about 
the actual locations, as there could be infinitely many 
locations at the same masked distance. Thus, the advantage 
of the adversary in this case is negligible. 

 
Lfair ≠ La: In this case, the adversary learns, after the 
execution of the protocol, another preferred location L f air ≠ 
La different from his own, in addition to the order among 
the maximum distances for all users. The adversary is able 
to compute the distance da, f air between his preferred 
location and L fair. However, thanks to the masking 
operation on the distances and to the independence among 
the users’ preferred locations, the adversary has no 
additional knowledge to link da, fair to any other masked 
dMAXi he knows. For instance, it is impossible for him to 
even compare da, fair to any of the dMAXi as only the LDS 
knows the secret scaling and shifting values used for the 
masking operation. Hence, even with the additional 
knowledge of the da, fair and L fair , the adversary cannot 
guess the value of k with a probability higher than a random 
guess. Thus, the advantage of the adversary is negligible in 
this case as well. 
 
Considering the previous arguments, we have the 
following: 
 

 

thanks to the independence of k’ conditioned on the 
outcome L f air. Thus, the identifiability-advantage is 
negligible. 
2) User Coordinate-Linkability Advantage: Similarly to the 
identifiability advantage, there could only be two possible 
outcomes of any PPFRVP algorithm A, represented by the 
two cases L fair ≠ La and L fair = La. Hereafter we show 
that the advantage of the adversary is negligible in both 
cases. 
 
L f air = La: In this case, the adversary does not learn any 
additional information about the coordinates of any two 
users j, k. As the masked and ordered distances cannot be 
linked to a specific coordinate with a success probability 
higher than 1/3, the adversary cannot guess whether the 
coordinate value b j is larger or smaller than bk with a 
probability higher than a random guess (1/2). In fact, as the 
order among the masked distances is a relative measure 
between locations that is position independent, it does not 
provide any additional information about the values of the 
coordinates of L j , Lk. Thus, the advantage of the adversary 
is negligible. 
 
Lfair ≠ La: In this case, the adversary can once again 
compute the distance da, f air between L f air and La. As 
the distance by itself conveys no information about the 
orientation or relative position between L j and Lk , ∀ j, k ∈ 
{1, . . . , N} and j ≠ k, the adversary cannot  guess whether 
the coordinate b, randomly chosen by the challenger, is 
larger or smaller for L j with respect to Lk with a higher 
certainty than a random guess. Thus, his advantage is 
negligible. 
 
Similarly to the identifiability advantage, we obtain: 

 
 
Thanks to the independence of the coordinate b from the 
outcome L f air . Thus, the coordinate-linkability is 
negligible. 
 
3) User Distance-Linkability Advantage: The PPFRVP 
algorithm defined in this manuscript takes as inputs the 

preferred rendez-vous locations Li of each user ui ∈ U and 

outputs both f (L f air ) and the set of randomized (but 

orderpreserving) maximum distances dmaxi , ∀ui ∈ U. By 

means of an example, we show that there is at least one case 
in which our PPFRVP algorithm does not satisfy distance-
linkability. 
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4) Third-Party Advantages: All elements that are received 
and processed by the LDS have previously been encrypted 
by the users with their common public key. In order to 
efficiently decrypt such elements, the LDS would need to 
have access to the private key that has been generated with 
the public key used for the encryption. As explained in 
Section II, in most practical settings, where service 
providers have a commercial interest in providing a faithful 
service to their customers, the LDS would not try to 
maliciously obtain the secret key. Therefore, all the LDS 
does in the PPFRVP algorithm is to obliviously execute 
algebraic operation on encrypted elements, without 
knowing the values within the encrypted elements. Hence, 
the PPFRVP algorithms do not disclose any information to 
third-parties, such as the LDS, during or after its execution. 
 
Privacy Analysis Under Active Adversary Model 
We consider three main types of active attacks, namely 
(i) Collusion among users and/or LDS, (ii) Fake user 
generation and/or replay attacks and (iii) Unfair rendez-
vous location. 
 
1.  Collusion: In the case of collusion among users, the 

published fair result can be used to construct exclusion 
zones. 
An exclusion zone is a region that does not contain any 
location preferences, and the number of such exclusion 
zones increases with the number of colluders. A set of 
colluding users could also select preferences which are 
close to each other, thus increasing the probability that 
the selected L fair is one among these preferences. 
Similarly, the colluding users could select preferences 
far away from each other, so that L fair is always 
selected from among the preferences of non-colluding 
users, thus revealing them. A much more serious case 
is the collusion between the LDS and a participant; the 
LDS could obtain the secret key shared by the 
participants, and thus learn the preferences of all the 
participants. These participants’ preferences could be 
then shared by the LDS with the colluding user. The 
proposed PPFRVP protocols do not protect against 
such strong collusion attacks. 
 

2. Fake Users: In case the LDS generates fake users, it 
would not be able to obtain the secret that is shared 
among the honest users and which is used to derive the 
secret key K Mvs for each session v. This attack is more 
dangerous if alegitimate participant creates a fake, 
because the legitimate participant knows the shared 
secret. In this scenario, however, the LDS knows the 
list of meeting participants (as it computes the fair 
rendez-vous location) and therefore it would accept 
only messages digitally signed by each one of them. 
Here we rely on the fact that fake users will not be able 
to get their public keys signed by a CA. Replay attacks 
could be thwarted by verifying an individually signed 
nonce, derived using the shared secret, in each user’s 
message. 

 

FIGURE 1: LDS DISTANCE COMPUTATIONS AND  CLIENT DISTANCE 

COMPUTATIONS. 

3) Unfair RV: The last type of active attack could result in 
the computation of an unfair rendez-vous location. 
Malicious modification or untruthful reporting of the 
maximum masked values (Step B.3 of Fig. 1) could 
deceive the LDS in accepting a false received index as 
the maximum value, and therefore lead to the 
computation of a non-fair rendez-vous location. 
However, this is unlikely to happen in practice. For 
instance, even if in Step B.3 a user falsely reports one 
of his values to be the maximum, this would cause the 
algorithm to select a non-fair rendez-vous location if 
and only if no other user selected a smaller value as the 
maximum distance. 

 
EXPERIMENTAL EVALUATION 

In this section, we present an in-depth evaluation of the 
proposed PPFRVP protocols by outlining the results of 
controlled experiments and user studies conducted using 
prototype implementation of the protocols on modern 
mobile 
Devices controlled experiments and user studies conducted 
using prototype implementation of the protocols on modern 
mobile devices. 
A. Implementation and Performance Measurements 
The client application is implemented on Nokia N810 
mobile devices (ARM 400 MHz CPU, 256 MB RAM, 
Linux Maemo OS) and the LDS implementation is running 
on a standard Linux PC (2 GHz CPU, 3 GB RAM, Ubuntu 
Linux). 

T.Prabhakara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1155-1161

www.ijcsit.com 1159



Our applications are implemented using the Qt 
programming framework. For the BGN-based PPFRVP 
protocol, we measure the performance using both a 160-bit 
and a 256-bit secret key, whereas for the ElGamal-Paillier-
based protocol we use 1024-bit secret keys. A 160-bit key 
in elliptic curve-based cryptosystems such as BGN provides 
equivalent security as a 1024-bit key in RSA and ElGamal 
[25] cryptosystems. 

 

 
Figure 2: LDS maximum computations and  Client max/argmin 

computations 

 
1) Computation Delay on the LDS: We can see in the 
Figure 1 that computation time required by the LDS 
increases with the number of users. Moreover, the 
ElGamal-Paillier based scheme is the most efficient across 
all computations, requiring only 4 seconds to execute the 
protocol with 10 participants. The two BGN-based 
algorithms are less efficient execution-wise (9 seconds). 
This is due to the CPU-intensive bilinear mapping 
operations of the BGN cryptosystem. 
 
2) Computation Delay on the Nokia N810 Clients: Figure 2   
shows the different computation times on the Nokia N810 
mobile device. As it can be seen, our BGN-based algorithm 
is the most efficient for the distance computations, 
requiring only 0.3 seconds, independently of the number of 
users. This is possible because each client needs to send 
only once its own encrypted vectors in order to allow the 
LDS to compute all pairwise distances, as opposed to the 
ElGamal-Paillier based algorithm that requires users to 
decrypt and re-encrypt values multiple times (depending on 
the number of users). The alternative protocol, on the 
contrary, needs 4 seconds with 10 participants. However, in 

the subsequent phases, the results are not as good because 
the BGN-based protocol makes intensive use of bilinear 
mapping operations. 
Overall, we can see that the ElGamal-Paillier based 
protocol has a better performance. Nevertheless, both 
schemes perform reasonably well on current generations of 
mobile devices. It is also important to observe that the 
results obtained in our experiments are based on our 
prototype implementation of the BGN scheme, which is not 
optimized for performance. 

CONCLUSIONS 

In this work, we addressed the privacy issue in the Fair 
Rendez-Vous Problem (FRVP). Our solutions are based on 
the homomorphic properties of well-known cryptosystems. 
We designed, implemented and evaluated the performance 
of our algorithms on real mobile devices. We showed that 
our solutions preserve user preference privacy and have 
acceptable performance in a real implementation. 
Moreover, we extended the proposed algorithms to include 
cases where users have several prioritized locations 
preferences. Finally, based on an extensive user-study, we 
showed that the proposed privacy features are crucial for 
the adoption of any location sharing or location-based 
applications. 
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